home *** CD-ROM | disk | FTP | other *** search
- .geometry "version 0.1";
- v1 = .free(-0.373461, -0.370725, "a");
- v2 = .free(-0.313269, 0.488372, "b");
- v3 = .free(0.652531, 0.064295, "c");
- l1 = .l.vv(v1, v2);
- l2 = .l.vv(v2, v3);
- l3 = .l.vv(v3, v1);
- v4 = .free(-0.086183, 0.064295, "X");
- l4 = .l.vv(v1, v4, .invisible, .longline);
- l5 = .l.vv(v3, v4, .invisible, .longline);
- l6 = .l.vv(v2, v4, .invisible, .longline);
- v5 = .v.ll(l3, l6, "b1");
- v6 = .v.ll(l2, l4, "a1");
- v7 = .v.ll(l1, l5, "c1");
- l7 = .l.vv(v1, v6);
- l8 = .l.vv(v3, v7);
- l9 = .l.vv(v2, v5);
- lab1 = .len.vv(v1, v5, " x1 = a-b1 ");
- lb1c = .len.vv(v5, v3, " x2 = b1-c ");
- lca1 = .len.vv(v3, v6, " y1 = c-a1 ");
- la1b = .len.vv(v6, v2, " y2 = a1-b ");
- lbc1 = .len.vv(v2, v7, " z1 = b-c1 ");
- lc1a = .len.vv(v7, v1, " z2 = c1-a ");
- r1 = .len.divide(lab1, lb1c, " r1 = x1/x2");
- r2 = .len.divide(lca1, la1b, " r2 = y1/y2");
- r3 = .len.divide(lbc1, lc1a, " r3 = z1/z2");
- tm = .len.times(r1, r2);
- ceva = .len.times(tm, r3, " r1*r2*r3 ");
- .text("Ceva's Theorem:");
- .text("");
- .text("Given an arbitrary triangle abc, and an arbitrary point x, construct");
- .text("the lines through a, b, c, and x and find the intersections of these");
- .text("three lines with the opposite sides. Each intersection divides the");
- .text("side in a ratio, and the product of the ratios is 1.0. In the figure,");
- .text("x1 is the length of a to b1, for example. Move the points a, b, c, and");
- .text("x, and note that the product of the ratios is constant.");
-